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ABSTRACT
In this paper we look at ways of detecting groups of strongly
related devices called communities which are present in mo-
bile Pocket Switched Networks (PSNs). We use existing
methods to detect communities which leverage repeated hu-
man movement patterns and “familiar strangers” within a
number of real PSNs extracted from the CRAWDAD repos-
itory. By using different community detection techniques we
attempt to show that there is a correlation between commu-
nity size and compactness and inter-community membership
of devices with increased data delivery. Finally our find-
ings are implemented in a prototype protocol called Qual-
ity which creates larger communities with increased inter-
community membership distributively.

1. INTRODUCTION
Pocket Switched Networks (PSNs) are complex wireless

networks in which connections are formed opportunistically
between participants who possess wireless devices. In con-
trast to modern telecommunications infrastructure, PSNs
do not necessarily have a permanent, hierarchical structure
which can be used to deliver data. In cases which we are
concerned with in this paper, PSNs are made up entirely of
mobile phones, laptops, or just about any ubiquitous device
which carry a non-infrastructure, ad-hoc capable, wireless
networking interface.

In purely mobile PSNs it should be possible to deliver
data from any member of the network to another. However,
the movement patterns of individuals and close-range wire-
less communication currently makes delivering data without
loss challenging in the real world. Devices in PSNs are fre-
quently unconnected, meaning that data delivery is proba-
bilistic and normally much slower and more uncertain than,
for example, in best effort infrastructure networks except in
remote areas. However, purely mobile PSNs can continue
to work when infrastructure is disrupted and can therefore
provide an important alternative delivery method in many
disaster scenarios.
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Data forwarding in PSNs usually involves a trade-off be-
tween the use of resources such as power, buffer utilisation,
and bandwidth with data delivery probability and delay. Re-
laying extra network information or duplicating packets can
often improve delivery but can also have an adverse effect
on battery life and wireless channel congestion.

It has been demonstrated that segregating networks seen
in Reality Mining Experiments [4] into logical partitions can
significantly improve data forwarding efficiency [5] in PSNs.
However, considering the many different partitions which
can be created by automatic means (Section 4), it is im-
portant to be able to predict if the community partitioning
being used is beneficial to data delivery. In many cases data
delivery based on automatic community detection can yield
bad results (Section 5.1).

In this paper we will analyse real world communities formed
by data-sets from the CRAWDAD repository [1, 4, 10]. Our
aim is to separate the good community partitioning from
the bad, in ways which affect data forwarding efficiency in
oblivious forwarding schemes. Finally, our findings are im-
plemented in a prototype protocol called Quality (Section 6)
which attempts to lower the number of distinct communi-
ties and increase inter-community membership in order to
deliver more messages successfully.

2. COMMUNITY DETECTION
From Reality Mining experiments, “Familiar Strangers”[8]

can be grouped together into closely related clusters. These
clusters can be called “Communities” in PSNs, and can be
detected by retrospective and centralised algorithms such as
the K-medoids and Weak Clustering techniques [11]. Com-
munities can also be detected in real-time using distributed
techniques, in which members of the network work together
to form social groups. This is called Distributed Community
Detection and when applied to PSNs, enables the devices to
discover their own communities without centralised control.

2.1 Distributed Community Detection
To the best of our knowledge, the performance of dis-

tributed community detection techniques relies heavily on
user specified variables which require advanced knowledge
of the scenarios where the algorithms are to be deployed.
Seemingly endless variation in partitioning can be achieved
by retrospectively tweaking variables to suit different ex-
periments (See the variation of performance in Figure 1 in
Section 5.1).

A common user defined variable is the “Familiar Thresh-
old”. Familiar Thresholds are used by devices to pick and



choose other devices which they encounter most often. In
order to store communities each device has a Local Com-
munity view which it stores in memory. Due to each de-
vice having its own Local Community and depending on the
clustering algorithm used, globally a device may be in many
different communities on many different devices. The follow-
ing distributed community formation algorithms were used
to generate the Local Communities with which we assessed
oblivious forwarding performance in this report.

2.1.1 Simple
Simple is a distributed community detection method de-

veloped by Hui et al. [6] which can be used to form com-
munities within a dynamic PSN. Simple works by building
communities of devices which share a large intersection of
encountered devices. The size of intersection is dictated by
the user provided variable, λ. By altering λ, Simple can
produce a wide range of communities so that studying the
relationship between different communities and data deliv-
ery can be undertaken 1.

2.1.2 Promote
In Simple, Familiar Devices, or devices which have the

highest cumulative connection times should include each
other in their Local Communities. Currently this is not
guaranteed to happen in Simple, as joining a Local Commu-
nity is based purely on the intersections of “Neighbour Ta-
bles” of two connected devices. If a Local Community is to
reflect the connectivity within a PSN more realistically and
include Familiar Devices, a secondary promotion method is
needed in addition to the community formation techniques
found in Simple. For this reason we devised Promote, which
extends Simple by adding a secondary “promotion” method.

Algorithm 1 Promote
input:
User defined Familiar Threshold, γ
Local community, C0

Remote device, i
Total time t, that local device has encountered device i
Remote device encountered most often (Familiar Device), p

if t ≥ γ then
if i /∈ C0 ∧ i = p then
C0 = C0 ∪ i

end if
The rest of the Simple logic. . .

end if

The extra logic in Promote works by looking for devices
with the highest cumulative connection times. When Famil-
iar Devices encounter each other, they will add each other to
their Local Communities if they are not already members.
This results in larger communities than the Simple algo-
rithm which seem to better reflect the connectivity between
devices.

3. EXPERIMENTAL ENVIRONMENT
Great care must be taken when performing Reality Min-

ing experiments in order to ensure that wireless range and

1Our implementation of Simple to be used in conjunction
with The One Simulator [7] is available for download at
http://apt.cs.man.ac.uk/projects/wireless/SimpleRouter.java

enquiry intervals are consistent. Otherwise, an unrealistic
view of communications rather than purely social commu-
nities may be gained. Furthermore, reliance on simulated
movement patterns and inferred connections between de-
vices could result in unrealistic movement patterns and con-
nection durations. To address this concern we have extended
The One Simulator v1.4 [7] to use trace files from a number
of real data-sets from the CRAWDAD repository 2.

The three data-sets used are shown in Table 1: An ex-
periment from LocShare labelled UCL1 [1]; InfoCom 05 [10]
and finally Cambridge city [9] from the Haggle project. In
each case, external and long range devices present in the
data-sets have been removed to concentrate on communities
formed solely by ad-hoc mobile wireless users.

3.1 Data Delivery
Data delivery in PSNs is opportunistic, which means data

can only be passed between devices if and when they are in
range of one another. As devices are carried by users who
are free to roam, being in contact with a particular other
device is seldom the case. Table 1 shows the “Daily Degree
Centrality”, the probability of meeting a particular device in
a day for each data-set. Note that this value is never high
enough to guarantee a daily contact between 2 devices in
any of the data-sets.

To compare community based data delivery against other
methods, we have calculated the best and worst case scenar-
ios for the data-sets in Table 1. The best case is provided by
flooding the network with copies of a message with no at-
tention paid to congestion in the wireless medium, and with
each device possessing a large message buffer. In the worst
case there is no attempt at routing and messages are only
delivered directly to their final recipients. This approach is
called “Wait” and is used in place of no delivery at all, which
would obviously yield a delivery probability of 0 and give no
insight into the benefits of communities.

Infocom5 Cambridge UCL1

Duration (Days) 3 12 6

Mobile Devices 41 36 20

Number of Connections 28216 21239 512

Daily Degree Centrality 0.78 0.24 0.53

Message TTL (Hours) 1

Global Message Frequency 120 messages created per hour

Transmit Speed 250kBps

Message Size 1KB

Buffer Size 5MB

Best Case Delivery Ratio 0.92 0.98 0.61

Worst Case Delivery Ratio 0.56 0.39 0.12

Worst Case Cost 38.97 34.03 16.22

Table 1: Comparison of data-sets with simulated
data delivery performance from Epidemic and Wait.

The Time To Live (TTL) of messages is tailored to the
sparsity of the data-sets rather than a specific application,
and in all cases here a TTL of 1 hour is used. For data
delivery, users are accustomed to relatively rapid delivery in
seconds, minutes or hours; seldom days or longer. The aim

2A copy of Connection Mode can be obtained from
http://apt.cs.man.ac.uk/projects/wireless/connections.rar



is to keep TTL as low as possible so as to suggest useful
applications such as messaging for future use.

3.2 Measuring Delivery Cost
Delivery cost is measured using the ratio of the total num-

ber of messages transferred between devices to those suc-
cessfully delivered within the message Time To Live (TTL).
This is a measure of the inefficient use of duplicated pack-
ets. Whilst not accounting for all costs this method is suf-
ficient to measure delivery efficiency as lower cost implies
fewer copied packets produced and transmitted which leads
to less energy consumption.

4. PROPERTIES OF DISTRIBUTIVELY
DETECTED COMMUNITIES

So that we may discuss how different community par-
titions affect date delivery, we must first understand how
communities are formed in detail. In this section charac-
teristics of communities detected by distributed formation
algorithms are described, starting with the devices them-
selves;

Distributed Community Characteristic 1. Each de-
vice running a distributed community detection algorithm
will belong to at least 1 community.

As devices are not guaranteed to ever come into contact in
PSNs, they may not have the opportunity to form commu-
nities larger than themselves. Requiring that devices belong
to at least 1 community means that the rule for the number
of communities created is:

Distributed Community Characteristic 2. n devices
running distributed community detection algorithms will cre-
ate n, sometimes identical, non-empty communities. The
communities which are created are called the Produced Com-
munities, P with each member in P being one of the 2n − 1
Possible Communities.

Each Produced Community in P will contain at least the
device ID of the device it was created by and possibly any
other ID from the n devices. Therefore the communities pro-
duced are all none-empty. The cardinality 2n−1 of the Pos-
sible Communities comes from the cardinality of the power
set of devices in the PSN, minus the empty set – as no Pro-
duced Communities can be empty.

Distributed Community Characteristic 3. The Pro-
duced Communities from n devices are a multi-set of com-
munity sets with a cardinality of n.

The Produced Communities in P can either be identical, or
different. Hence why P is a multi-set of communities. From
P we can extract all the distinct sets, minus the duplicates.
The distinct sets are called Natural Communities.

Distributed Community Characteristic 4. Within P
there is a family of Natural Communities called N:

N = {x : x is a community inP} (1)

More properties of Natural Communities to note are; Ev-
ery device is guaranteed to be in at least one Natural Com-
munity, and devices can belong to multiple Natural Commu-
nities at the same time. The final observation to be made
about the characteristics of Local Communities is that some
can be contained within others.

Distributed Community Characteristic 5. Natural
Communities can be encompassed by others. The set of the
largest Natural Communities minus any sub-sets is called the
family of Community Super-Sets, S.

It is important to note that; There can be multiple Com-
munity Super-Sets reported by a distributed community de-
tection algorithm; A Community Super-Set may encompass
one or more Natural Communities; Every device will be in
at least one Community Super-Set.

4.1 Community Validation
The community labelling scheme mentioned in the previ-

ous section can be used with different cluster validation tech-
niques in order to perform analysis on communities within
a PSN.

PC(c) =
1

N

c∑
i=1

N∑
j=1

(µij)
2 (2)

The Jaccard Index is used to assess the similarity of clus-
ters. It has been used previously in PSN research to bench-
mark distributed community detection against centralised
algorithms [6]. Dunn’s Validity Index is a ratio of within
cluster and between cluster separations which can also be
applied to communities. A high Dunn’s Validity Index can
identify clustering which is compact and well separated. To
measure mutual inclusion between communities, or “fuzzy”
communities – the Partition Coefficient (2) can be used.

4.2 Data Delivery Using Communities
The algorithms in Section 2.1 were designed for commu-

nity discovery, not for data delivery. Few data delivery
schemes for PSNs are transferable to hierarchical structures
which communities offer, and there are few shared charac-
teristics between data delivery schemes which we can use to
assess communities for data delivery. However, one char-
acteristic which many data forwarding schemes do share is
flooding, and duplication of data. With this in mind we
have produced an oblivious forwarding scheme aimed at pro-
viding a control case (null hypothesis) which uses message
duplication and flooding to look for important community
characteristics. The simple flooding technique shown in Al-
gorithm 2, aims to flood an encountered community contain-
ing the destination device with copies of the data as much
as possible.

Algorithm 2 Community Based Data Delivery
The Local Community of a particular device i is denoted Ci

input:
A list of all devices currently in range, E
A data packet called m
The final destination of m is d

for all E as i do
if i = d then
DeliverMessage(m)

else
if d ∈ Ci then
CopyMessageToEncounteredNode(m)

end if
end if

end for



5. QUALITY COMMUNITIES

Figure 1: Delivery probability and cost variance of
communities produced in the Cambridge and UCL1
data-sets.

Using The One Simulator and the data-sets from CRAW-
DAD, we will now investigate how the “quality” of commu-
nity segregation affects delivery in PSNs. Figure 1 shows
how data delivery rates can vary significantly with differing
choices of variables in the Simple, Promote, and K-medoid
algorithms. All of these algorithms have one thing in com-
mon, they develop communities based on the frequency of
encounters between devices. For Simple and Promote we
measured for a wide range of λ values between 0 and 1 with
a resolution of one hundredth of a second, and integer values
between 3 and 16 for the K-medoid technique.

5.1 Community Compactness And Separation
To discover if there is a significant relationship between

data delivery and the separation of communities, one can
adopt the qualitative Dunn’s Validity Index (Section 4.1).

Results for Dunn’s Validity Index of the Natural Commu-
nities produced on our 3 different data-sets are presented in
Figure 2a. Pearson Correlation Coefficient (PCC) is used
to measure the linear dependence between Dunn’s Validity
Index and data delivery. PCC is positive in the Cambridge
and InfoCom5 data-sets shown in Table 2, although there
exists a negative PCC for the UCL1 data-set. This discrep-
ancy suggests that there is more to data delivery than simply
discovering isolated communities.

5.2 Inter-community membership
Inter-community membership is only possible when com-

munities share devices in common. This is sometimes called

Figure 2: Community measurements.

PCC for data-sets

UCL1 Cambridge InfoCom5

Dunn’s Validity -0.43 0.67 0.61

Partition Coefficient 0.95 0.88 0.80

Jaccard 0.03 0.37 0.68

Number of NCs -0.05 -0.75 -0.77

Table 2: Pearson Correlation (PCC) of community
measurements against data delivery.

“Fuzzy clustering”. Produced Communities created by dis-
tributed community detection algorithms running on multi-
ple devices can have this “fuzzy” property because devices
form community views independently. As we saw in Sec-
tion 4, devices will always belong to at least one Produced
Community and up to n more. As a consequence all the clas-
sifications of communities produced by distributed means
are “fuzzy” and not “crisp”.

The results from the previous Section 5.1 were inconclu-
sive, showing that community segregation alone can not pre-
dict network performance. This is partly due to the fuzzy
nature of Produced Communities, which we have measured
using the Partition Coefficient for community overlap (Sec-
tion 4.1) in Figure 2b. Table 2 shows communities with
a greater degree of overlap give the greatest probability of
data delivery with a PCC consistently higher than 0.8. We
also see that data delivery approaches that of Epidemic’s
when Partition Coefficient of the community segregation is
between 0.4 and 1.0.

5.3 Agreement Between Devices
As Local Communities are created by devices indepen-

dently, different Local Community views can be produced,
even between devices which have each other in their Lo-
cal Communities. To see what the extent this variance af-
fects data delivery we have plotted the Jaccard Index (Sec-
tion 4.1) of Community Super-Sets against the Natural Com-
munities produced in the same experiments. Here, the Jac-
card Index assesses the similarity between all the Natural
Communities and the largest communities reported by de-
vices – and therefore the level of agreement within the net-
work.



The data in Table 2 and Figure 2c shows that an increased
level of disagreements between devices actually improves
data delivery based on the positive PCC observed. How-
ever, a significant PCC is only observed in the InfoCom5
data-set.

5.4 Network Fragmentation
To further investigate how disagreements between devices

can affect data delivery, we looked at the number of Natural
Communities in the PSNs. Table 2 and Figure 2d show a
negative relationship between the number of Natural Com-
munities and data. In other words the fewer Natural Com-
munities there are, the greater the data delivery should be.

The implication of this finding, along with device confor-
mity, is that devices should negotiate shared local commu-
nity views where appropriate. This lowers the number of
distinct Natural Communities across the network, but care
should be taken to ensure inter-community overlap is not
destroyed completely.

5.5 Heterogeneity Of Community Popularity
In previous work by Hui et al. [5] it was observed that pre-

existing schemes for passing data within PSNs are inefficient
because they assume that every node is statistically equiv-
alent and homogeneous. A PSN is an example of a “small
world network” with some devices having more connections
to other devices than others [3] causing large variances in
“betweenness centrality”.

In a similar way to inter-device betweenness centrality we
want to know whether communities exhibit heterogenious
behaviour. Is the heterogeneity of popularity of communities
based on anything other than the number of connections, for
example on unbounded size [2]?

Figure 3: Which Natural Communities are used to
relay packets.

The number of times that a Natural Community is used to
relay data can be counted. Using the experiments across the
data-sets a picture emerges about which Natural Communi-
ties are used more frequently which is presented in Figure 3.
The heat in this graph shows cross experiment frequency of
Natural Community size vs. the proportion of times they
were used to relay data, with the majority of Natural Com-
munities used being less than half the size of the total PSN.

The commonness of smaller Natural Communities across
PSN experiments can be used as an explanation for the per-
formance variation encountered in Figure 1. Figure 4 shows

delivery ratio and cost rising with natural community size.
A delivery ratio close to that of Epidemic’s is achieved when
Natural Community size is roughly 30% of that of the PSN.

Figure 4: Delivery ratio and cost based on Natural
Community size.

In general we can not conclude that community popularity
is heterogeneous, because it depends on the size of commu-
nity. However the larger the community, the more likely
it is to contain the target destination – and the higher the
heterogeneity of popularity of the community tends to be
compared to other smaller communities.

6. NEW PROTOTYPE – QUALITY
To demonstrate how inter-community isolation, commu-

nity size and overlap can be controlled distributively, we
have implemented a simple prototype protocol called Qual-
ity to compare against Promote and Simple. Quality aims to
reduce the number of Natural Communities created by us-
ing a more active community merging procedure than these
other protocols. It also introduces overlap in Produced Com-
munities which have no devices in common by always adding
Familiar Devices regardless of Local Community compar-
isons. An overview of the algorithm which takes place on a
device during an encounter can be found in Algorithm 3.

6.1 Results
Quality offers more consistent performance than Simple

or Promote because it is less dependent than either protocol
on user defined variables. Figure 5a shows Quality consis-
tently performing better than the other community detec-
tion algorithms albeit at a higher cost, shown in Figure 5b .
Quality does this by introducing overlap and forcing devices
to merge their local community views more often.



Algorithm 3 Quality Community Formation
input:
User defined familiar threshold, γ
User defined community inclusion threshold, λ
Local community, C0

Remote device, i
Local community of i, Ci

Total time, t local device has encountered i
Remote device encountered most often (Familiar Device), p

if t ≥ γ then
if (i /∈ C0 ∧ i = p) then
C0 := C0 ∪ i

end if
if (|C0 ∩ Ci| > (λ ∗ |C0 ∪ Ci|)) then
C0 := C0 ∪ Ci

end if
if (|C0 ∩ Ci| = 0) then
C0 := C0 ∪ i

end if
end if

7. CONCLUSIONS & FUTURE WORK
A study of data delivery via communities formed in PSNs

has been presented. It shows that data delivered by commu-
nity formation algorithms is not reliant on any single factor.
However there are a number of tests which can be used to
identify whether community partitions are suitable for data
delivery. The findings reiterate that Epidemic routing for
PSNs is very inefficient but by partitioning the devices in
the following ways efficiency can be improved;

1. Natural Communities should be “fuzzy” with a Par-
tition Coefficient greater than 0.4 for successful data
delivery (Section 5.2).

2. Disagreements between devices are essential to provide
“fuzzy” communities. However too much disagreement
and too many Natural Communities can harm data
delivery (Sections 5.3 & 5.4).

3. There is a strong linear dependence between Natu-
ral Community size and the number of packets they
can relay (Section 5.5). In our examples, best results
are achieved where average Natural Community size is
over 30% of total data-set size.

This list does not claim to be exhaustive for all the fac-
tors associated with community based routing. This work
has gone some way to highlighting the need for further de-
velopment of community detection in PSN data-sets. The
findings will prove useful when developing distributed com-
munity detection algorithms with data routing in mind.
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